If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2+5q-34.59=0
a = 1; b = 5; c = -34.59;
Δ = b2-4ac
Δ = 52-4·1·(-34.59)
Δ = 163.36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{163.36}}{2*1}=\frac{-5-\sqrt{163.36}}{2} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{163.36}}{2*1}=\frac{-5+\sqrt{163.36}}{2} $
| 7x-3x-12=4x-2x+18 | | 5x+2x+1+30=4x+2x+64 | | 5d+1=2d+10 | | 0.25(12x+8)=28 | | 5x+2x+1+30=4x-2x+18 | | x+16=225/x | | 5(x-3)=2(x+15) | | 21÷x=26 | | 1/4(12x+5)=28 | | 4(x+5)=2(x+22) | | 54-6w=4w-26 | | 14+5x=3(-x+3 | | 112=-4(8-3x) | | r/3-1=2 | | -10+6(2q-3)=-52 | | -4(8-3x-(112)=0 | | -4(8-3x=112 | | 3y-16=5y-34 | | 34=-12c+5(c-3) | | -120=-5(6+3p) | | 86.5+-1q+-1.5q2=0 | | 7a=3(a+4) | | 3x-7=109 | | 416=-8(7n-3) | | 3x-7=119 | | 2x(3-x)=2x | | -2j+7=7 | | 154=-7(4x-2) | | 5x^2-98x-2205=0 | | 1/x=5/20 | | -8m-6m=14 | | g(-2)=-X+4X+1 |